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What does it mean (not) to have confidence
in a statement ¢?

Two Interpretations:

» How likely do I find it? DEGREE OF BELIEF

* « How much should it influence my beliefs? DEGREE OF TRUST
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A Simple Example: Linear Interpolation

. belief states 4 € O = A(W) are probability measures;
. statements A4 € b g VW areevents; f\Totes:

no obvious probabilistic

. confidence X € [O, ].] in the unit interval; interpretation of y?
» full-confidence update is

a projection

Lrn(A, x, p) = (1 = x)p + x(plA)

o/—\/\o

ignore @ no confidence fully incorporate @ full confidence

Lrn(A, L pu)=pu Lrn(A, T, u) = plA
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Unifying Existing Concepts
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Confidence Domain

LT =(D,<,e,T,1,9)

no confidence geometry
full confidence

preorder

independent
combination

xex)ex"'=x® ' ax") (associativity),
1l®dx=x (that _L 1s neutral),
Tohx=T (and that T 1s absorbing).
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Axioms for Confidence ..
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Posterior
Belief

Lm;”o Lrny(0) = Lrngl(()).

[L4] Hxo<x<x
and Lrng(x0,6) = Lrng(x1,0),

then Lrng(x,0) = Lrng(xo, 0).

aiive  [L3] Lrng(x, Lrne(x',0))
o™ = Lrng(x ® X', 0)
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Canonical Representations of Confidence

Theorem (additive representation).

If Lrn satisfies [Li-5], then there is a translation
g(x, 0) of confidence y € [L, T] to the additive
domain [0, o] and a learner *Lrn such that

Lrn(¢, x,0) = *Lrn(¢, g(x,0),0)

 This “flow form” implies a vector field
representations of learners which can be very useful;



Optimizing Learners

9,

[LB4] —=—Lmn(¢,x,0) = VeBel(0, )

ox
learning is about locally increasing belief,

1.e., gradient descent to minimize loss.

Some examples using relative
entropy and log probability:

Gradient
flow
(idealized
training)

linear
interpolation

Probabilistic
Dependency
Graphs

Jeffrey’s
Rule (full- (PDGs)
confidence)



What about when learning objective is linear?

Defn (Bayesian Learner).
»  Beliefs correspond to P(H);

Defn (Loss-Linear Learner). *  H comes with likelihood P(¢ | H);
An optimizing learner with a linear objective, «  Updates by Bayes Rule: 3 x € [L, T].
i.e., satisfying LB4 with Bel(6, ¢) = ]Eg[V¢,] , Lrn(¢p,x, P(H)) = P(H | ¢) < P(¢p | H)P(H)

in the natural (Fisher) geometry.

Proposition: A learner for

probability distributions is Bayesian
Boltz(P, B, $)(w) e P(w) exp ( B Vg (W)) : if and only if it is loss-linear, with

That is, the posterior is a Boltzman distribution with the Vg (h) = log P(E|h)

prior as the base measure, the confidence as inverse

temperature, and the value V as the energy.

Proposition. The additive form of a loss-linear learner is:



Representations of Confidence-based Learners

Update Path |
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Conclusion

If certainty is about black and white,
then probability is about shades of gray,
learner’s confidence is about transparency.

« Learner’s confidence is distinct from

P Confidence
x€LT]

« Unifies many concepts in the literature:

. . . . Observation
» Sensor precision, Kalman gain, virtual evidence,
weight of evidence, thermodynamic coldness,
Boltzmann rationality constant f3,

Prior Postgrior
learning rate, number of epochs, ... At od -
) AT

* Bayesian updates are a restrictive special case.



