
 Learning with Confidence 

Oliver Richardson

Uncertainty in Artificial Intelligence (UAI) 2025

𝜙
𝜒



What does it mean (not) to have confidence  
      in a statement 𝜙? 

• How likely do I find it?

Two interpretations:

DEGREE OF TRUST

DEGREE OF BELIEF

• How much should it influence my beliefs?
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Even a Broken Clock… Authoritative Corroboration
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A Simple Example 

belief states are probability measures;

statements are events;

in the unit interval;confidence

: Linear Interpolation 

ignore @ no confidence fully incorporate @ full confidence

Notes:
• no obvious probabilistic 

interpretation of 𝜒?
• full-confidence update is

a projection 
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Unifying Existing Concepts 
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Confidence Domain 
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Axioms for Confidence 



Confidence 
𝜒 ∈ ⊥, ⊤

Prior
Belief 

Θ

Posterior
Belief 

Θ

𝐿𝑟𝑛థ

𝜃 𝜃

𝜒 = ⊥ 𝜒 = ⊤

𝐿𝑟𝑛థ(𝜃, 𝜒)

𝜙

[L1]

[FC]

[L2]
is continuous, twice diffble

[L4]

[L5]

[L3]

An action of 
the confidence 

domain



Canonical Representations of Confidence 

Theorem (additive representation).  
If  Lrn satisfies [L1-5], then there is a translation 
𝑔 𝜒, 𝜃  of confidence 𝜒 ∈ [⊥, ⊤] to the additive 
domain 0, ∞  and a learner  +Lrn  such that 
  

𝐿𝑟𝑛 𝜙, 𝜒, 𝜃 = +𝐿𝑟𝑛(𝜙, 𝑔 𝜒, 𝜃 , 𝜃) 

• This “flow form” implies a vector field 
representations of learners which can be very useful;



Optimizing Learners 

[LB4] 

learning is about locally increasing belief,
i.e., gradient descent to minimize loss.
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What about when learning objective is linear? 

Defn (Loss-Linear Learner).  
An optimizing learner with a linear objective,  

i.e., satisfying LB4 with 𝐵𝑒𝑙 𝜃, 𝜙 =  𝔼ఏ  𝑉థ  ,  

in the natural (Fisher) geometry.  

Proposition. The additive form of a loss-linear learner is:

𝐵𝑜𝑙𝑡𝑧 𝑃, 𝛽, 𝜙 𝑤 ∝ 𝑃 𝑤 exp  𝛽 𝑉థ 𝑤 .

That is, the posterior is a Boltzman distribution with the 
prior as the base measure, the confidence as inverse 
temperature, and the value 𝑉థ as the energy. 

Defn (Bayesian Learner).  
• Beliefs correspond to 𝑃 𝐻 ;
• 𝐻 comes with likelihood 𝑃 𝜙 𝐻 ;
• Updates by Bayes Rule: ∃ ⋆ ∈ ⊥, ⊤ .

𝐿𝑟𝑛 𝜙,⋆, 𝑃 𝐻 = 𝑃 𝐻 𝜙 ∝ 𝑃 𝜙 𝐻 𝑃 𝐻

Proposition: A learner for 
probability distributions is Bayesian 
if and only if it is loss-linear, with 

𝑉ா(ℎ) = log 𝑃(𝐸|ℎ)



Representations of Confidence-based Learners 

Learners on a 
confidence 
continuum 

Optimizing 
Learners “Bayesian” 
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Conclusion 
If certainty is about black and white, 
then probability is about shades of gray,
learner’s confidence is about transparency. 

• Learner’s confidence  is distinct from likelihood;

• Unifies many concepts in the literature:
• Sensor precision, Kalman gain, virtual evidence, 

weight of evidence, thermodynamic coldness,
Boltzmann rationality constant 𝛽, 
learning rate, number of epochs, …

• Bayesian updates are a restrictive special case. 
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